个人简况:
荆文龙,博士,现任广州地理研究所遥感与GIS研究部副研究员。2017年于中国科学院地理科学与资源研究所获地图学与地理信息系统博士学位。近年来主要从事水文水资源遥感、多源时空数据融合及尺度转换方面的研究,主持及参与国家和地方科技项目8余项,发表论文30余篇。
研究领域与研究方向:
水文水资源遥感、多源时空数据融合及尺度转换、遥感人工智能
近年主持/参与的科研项目:
[1]国家自然科学基金青年项目-基于机器学习和数据融合的FY-3B土壤湿度数据高分辨 率重建方法研究,4180011358,2019/01-2021/12,25.8万元,在研,主持
[2]国家自然科学基金面上项目-基于机器学习的南海岛礁浅海水深遥感反演研究,41976190,2020/01-2023/12,62万元,在研,参与
[3]国家科技基础条件平台,国家地球系统科学数据共享平台-水文遥感专题数据整合与集成,2017/11-2018/12,20万元,结题,主持
[4]国家科技基础条件平台,国家地球系统科学数据共享平台-水文水资源专题数据整合与集成,2020/11-2021/12,35万元,在研,主持
[5]广东省科学院2018年实施创新驱动发展能力建设专项资金项目,2018GDASCX-0904,基于机器学习算法的卫星降水数据时空序列重建方法,2018/01-2019/12,25万元,结题,主持
[6]广东省科学院百名人才培养专项-基于集成学习算法的根部土壤水分遥感数据同化方法研究,2020GDASY-20200104003, 25万元,2020/01-2022/12,在研,主持
[7]广东省自然科学基金项目-基于多源数据融合的风云三号气象卫星土壤湿度高分辨率重建方法研究,2018A030310470,10万元,2018/05-2020/5,结题,主持
[8]广东省科学院建设国内一流研究机构行动专项项目-遥感大数据智能分析关键技术研究与应用,2019GDASYL-0502001,100万元,2019/01-2020/12,在研,参与
主要成果:
论文:
[1]Jing, W. et al. (2020) Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure Journal of Hydrology 590:125239 doi:10.1016/j.jhydrol.2020.125239
[2]Liu Y, Jing W*, Wang Q, et al. Generating high-resolution soil moisture by using spatial downscaling techniques: a comparison of six machine learning algorithms[J]. Advances in Water Resources, 2020: 103601.
[3]Jing, W., Zhao, X., Yao, L., Di, L., Yang, J., Li, Y., Guo, L., & Zhou, C. Can terrestrial water storage dynamics be estimated from climate anomalies? Earth and Space Science, n/a, e2019EA000959
[4]Jing, W., Zhao, X., Yao, L., Jiang, H., Xu, J., Yang, J., & Li, Y. (2020). Variations in terrestrial water storage in the Lancang-Mekong river basin from GRACE solutions and land surface model. Journal of Hydrology, 580, 124258.
[5]Jing, W., Yao, L., Zhao, X., Zhang, P., Liu, Y., Xia, X., ... & Zhou, C. (2019). Understanding terrestrial water storage declining trends in the Yellow River Basin. Journal of Geophysical Research: Atmospheres, 124.
[6]Liu, Yangxiaoyue; Yao, Ling; Jing, Wenlong*; Di, Liping; Yang, Ji; Li, Yong; Comparison of two satellite-based soil moisture reconstruction algorithms: A case study in the state of Oklahoma, USA , Journal of Hydrology,2020, 590: 0-125406.
[7]Jing, Wenlong; Di, Liping; Zhao, Xiaodan; Yao, Ling; Xia, Xiaolin; Liu, Yangxiaoyue; Yang, Ji; Li, Yong; Zhou, Chenghu; A data-driven approach to generate past GRACE-like terrestrial water storage solution by calibrating the land surface model simulations, 0-103683. Advances in Water Resources, 2020, 143:
[8]Jing, W., Song, J. & Zhao, X. A comparison of ECV and SMOS soil moisture products based on OzNet monitoring network. Remote Sens 2018, 10(5):703.
[9]Jing, W.; Song, J.; Zhao, X. Validation of ECMWF Multi-Layer Reanalysis Soil Moisture Based on the OzNet Hydrology Network. Water 2018, 10, 1123.
[10]Jing, W., Song, J. & Zhao, X. Evaluation of Multiple Satellite-Based Soil Moisture Products over Continental U.S. Based on In Situ Measurements. Water Resour Manage 2018, 32(9): 3233-3246
[11]Jing, W., Zhang, P. & Zhao, X. Reconstructing Monthly ECV Global Soil Moisture with an Improved Spatial Resolution. Water Resour Manage, 2018, 32(7): 2523-2537.
[12]Jing W, Zhou X, Zhang C, et al. Machine Learning for Estimating Leaf Dust Retention Based on Hyperspectral Measurements. Journal of Sensors, 2018, 2018.
[13]Jing, W.; Zhang, P.; Jiang, H.; Zhao, X. Reconstructing satellite-based monthly precipitation over northeast China using machine learning algorithms. Remote Sens 2017, 9(8), 781.
[14]Zhao X, Jing W*, Zhang P. Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China Sustainability. 2017, 9:1912.
[15]Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-based Precipitation Over the North China Area. Remote Sens. 2016, 8(10), 835.
[16]Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8(8), 655.
[17]Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping Urban Areas with Integration of DMSP/OLS Nighttime Light and MODIS Data Using Machine Learning Techniques. Remote Sens. 2015, 7(9), 12419-12439.
授权发明专利:
(1)荆文龙; 周成虎; 姚凌; 杨骥;基于随机森林回归算法的土壤湿度检测方法、装置及电子设备,2018-9-30,中国,CN201811159031.6.(发明专利)
(2)荆文龙; 周成虎; 姚凌; 杨骥;基于随机森林分类算法的城市范围提取方法、装置及电子设备,2018-9-30,中国,CN201811159030.1. (发明专利)
(3)荆文龙; 李勇; 刘杨晓月; 杨骥; 夏小琳;基于随机森林算法的植被指数预测方法、系统及设备,2019-9-24,中国,ZL201910905230.5. (发明专利)
(4)荆文龙; 刘杨晓月; 李勇; 杨骥; 夏小琳;基于极端梯度提升算法的植被指数预测方法、系统及设备,2019-9-24,中国,ZL201910905212.7. (发明专利)
(5)荆文龙; 李勇; 刘杨晓月; 杨骥; 夏小琳;一种基于极端梯度算法的陆地水储量预测方法及设备,2019-9-24,中国,ZL201910904059.6. (发明专利)
(6)荆文龙; 刘杨晓月; 李勇; 杨骥; 夏小琳;一种基于决策树算法的陆地水储量预测方法、装置及设备,2019-9-24,中国,ZL201910904377.2. (发明专利)
(7)荆文龙; 刘杨晓月; 李勇; 杨骥; 夏小琳;基于随机森林的岛礁浅海水深预测方法, 2019-9-30,中国,ZL201910943217.9. (发明专利)
(8)刘杨晓月;荆文龙; 夏小琳; 李勇; 杨骥;一种土壤水分数据获取方法、系统、存储介质及设备,2019-09-24,中国,ZL201910905363.2. (发明专利)
联系方式:
地址:广州市先烈中路100号大院广州地理研究所
邮编:510070
邮箱:jingwl@lreis.ac.cn